Bishop Elementary
Fifth Grade

A. Smith
H. Smith
Goerlitz
Rowell
Grade: 5th

Four-in-Ones (one per day)
- Malala Yousafzai
- Princess Diana
- Mother Teresa
- Wilma Rudolph
- Pocahontas
- Hillary Clinton
- Bessie Coleman
- Marie Curie
- Phillis Wheatley
- Eunice Kennedy Shriver

Science/Social Studies (one per day)
- Soil
- Erosion and Weathering
- Fossils
- Heat
- Insulators and Conductors
- Levels of Government
- Executive Branch
- Legislative Branch
- Judicial Branch
- Longitude and Latitude

Scholastic News/Trax – 5 issues
(Use for your 30min. a day reading)
- #1
- #2
- #3
- #4
- #5

Reading (30 minutes per day)

Math (2-3 pages per day)

Writing
See reverse for a daily writing prompt checklist.
Daily writing prompt (One per day)
These paragraphs should be a minimum of one paragraph. Challenge yourself to write more!

- Should Upper House Students have PDR? Why?
- What is your favorite day of the week? Why?
- Would you rather be really smart, really good looking, or really athletic? Why?
- Is it better to be a kid or an adult? Why?
- How can you stay busy on a rainy day without electronics?
- How can you cheer up a friend when they are sad?
- What would it be like if dinosaurs still lived?
- Write a story about finding a mysterious box in the grass
- Write a story about being invisible.
- Write about finding a dragon egg that is about to hatch.
Malala Yousafzai

“All I want is an education, and I am afraid of no one.”

Malala began blogging at the age of eleven. Living in northern Pakistan, she yearned for an education, but a strict group called the Taliban ruled her region. They believed girls shouldn’t attend school. Malala continued to blog about her fight for girls to receive an education. In 2012, the Taliban tried to silence her words by shooting her, but Malala did not let that stop her. She healed and courageously continued her protest. She gained the attention of millions and was awarded the Nobel Peace Prize in 2014 for her bravery.

Vocabulary Practice

Use the context clues in the passage to help you determine the meaning of the underlined word. Circle your answer.

1. In 2012, the Taliban tried to silence her words by shooting her...
 a. stop b. promote c. copy

2. Living in northern Pakistan, she yearned for an education...
 a. avoided b. wished c. heard

3. She healed and courageously continued her protest.
 a. bravely b. fearfully c. happily

Comprehension Practice

1. Where did Malala Yousafzai live?

2. What did the Taliban believe about girls in school?

3. How did Malala get her message out to the world?

4. How did the Taliban try to stop Malala?

Think and Respond

What legacy do you think Malala Yousafzai will leave for future generations?
Princess Diana
Diana always enjoyed helping people. As an adult, she said, “Anywhere I see suffering, that is where I want to be, doing what I can.” While she was Princess of Wales, she devoted her time visiting sick children and raising money for the Red Cross and AIDS Foundation. Her charitable efforts helped many, and her work was appreciated. Princess Diana never enjoyed the intrusive nature of the paparazzi, or celebrity photographers. Sadly, she died in a car accident while being chased by the paparazzi. Her legacy of helping others lives in the hearts of all who knew her.

Vocabulary Practice
Write the correct synonym and antonym from the group of words to match the given vocabulary words.

<table>
<thead>
<tr>
<th>vocabulary word</th>
<th>synonym</th>
<th>antonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>dedicated</td>
<td>nosy</td>
<td>disloyal</td>
</tr>
<tr>
<td>kind</td>
<td>indifferent</td>
<td>tough</td>
</tr>
</tbody>
</table>

Comprehension Practice
1. What did Princess Diana raise money for?

2. How was Princess Diana killed?

3. What kind of person was Princess Diana?

Think and Respond
What legacy did Princess Diana leave behind for future generations?
Mother Teresa

Mother Teresa once said, "Be faithful in small things because it is in them that your strength lies." She began her missionary work in India to help the needy at age eighteen, and devoted her life to others. When she opened the Missionaries of Charity in the 1940s, there were only thirteen members to help her. Today, there are thousands of members spreading the same message of love and compassion to people struggling to receive the basic necessities of life. Mother Teresa was awarded the Nobel Peace Prize in 1979 for her courageous and selfless work.

Vocabulary Practice

Write the correct synonym and antonym from the group of words to match the given vocabulary words.

courage disloyal generous
loyal selfish weakness

<table>
<thead>
<tr>
<th>vocabulary word</th>
<th>synonym</th>
<th>antonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>strength</td>
<td></td>
<td></td>
</tr>
<tr>
<td>devoted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>selfless</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comprehension Practice

1. Where did Mother Teresa begin her missionary work?

2. Who did Mother Teresa help?

3. Why did Mother Teresa win the Nobel Peace Prize?

Think and Respond

What legacy did Mother Teresa leave behind for future generations?
Wilma Rudolph

Polio is a crippling and deadly virus that nearly killed Wilma as a child, but it didn’t kill her courage and determination. She went on to become an accomplished high school track athlete. Coaches recognized Wilma’s talents when she won several track meets. She made it to the Olympics in 1960 and won three gold medals. Wilma became known as the “World’s Fastest Runner.” After winning, she worked with young athletes and helped to improve the rights of African Americans. Despite her early challenges, Wilma believed, “The potential for greatness lives within each of us.”

Vocabulary Practice

Use the context clues in the passage to help you determine the meaning of the underlined word. Circle your answer.

1. Polio is a _______________ and deadly virus that nearly killed Wilma as a child.

 a. helping b. strengthening c. disabling

2. She went on to become an accomplished high school track athlete.

 a. talented b. unknown c. incapable

3. “The potential for greatness lives within each of us.”

 a. inability b. unlikely c. ability

Comprehension Practice

1. What illness did Wilma Rudolph have?

2. What sport Wilma participate in in high school?

3. What did Wilma become known as?

4. How do you know Wilma was successful?

Think and Respond

What legacy did Wilma Rudolph leave behind for future generations?

Pocahontas

As the daughter to the chief of the Powhatan tribe, Pocahontas gained skills as a young Native American girl in the early 1600s. One day, English settlers descended upon Virginia where the Powhatan tribe lived and established a settlement called Jamestown. It is said that Pocahontas saved John Smith from being killed by the Powhatan tribe. Relationships between the Powhatan and the English were not always peaceful. Pocahontas was taken as captive by the English, but she always remained compassionate towards them. Pocahontas later married and moved to England.

Vocabulary Practice

Write the correct synonym and antonym from the group of words to match the given vocabulary words.

<table>
<thead>
<tr>
<th>calm</th>
<th>free</th>
<th>left</th>
</tr>
</thead>
<tbody>
<tr>
<td>imprisoned</td>
<td>settled</td>
<td>violent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vocabulary word</th>
<th>synonym</th>
<th>antonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>descended</td>
<td></td>
<td></td>
</tr>
<tr>
<td>peaceful</td>
<td></td>
<td></td>
</tr>
<tr>
<td>captive</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comprehension Practice

1. What tribe did Pocahontas belong to?

2. Who is said to have been saved by Pocahontas?

3. Who took Pocahontas captive?

4. How did Pocahontas treat the English?

Think and Respond

Why do you think the relationship between the Powhatan and the English were not always peaceful?
Hillary Clinton

“Freedom means the right of people to assemble, organize, and debate openly.” Hillary Clinton started off as a lawyer, defending children. In 1992, her husband was elected to be the president of the United States. As First Lady, Clinton worked for health care reform and human rights around the world and protecting historic American artifacts. In 2000, she was elected US. State Senator of New York. In 2007 Clinton campaigned to become President of the United States. She lost to Barack Obama, but became the third woman to serve as Secretary of State.

Vocabulary Practice

Use the context clues in the passage to help you determine the meaning of the underlined word. Circle your answer.

1. Hillary Clinton started off as a lawyer, defending children.
 a. mistreating b. helping c. greeting

2. In 2007, Clinton campaigned to become president of the United States.
 a. fought b. learned c. visited

3. “Freedom means the right of people to assemble, organize, and debate openly.”
 a. break up b. part c. gather

Comprehension Practice

1. What was Hillary Clinton’s job when she defended children?

2. What happened to her husband in 1992?

3. In what year was Hillary Clinton elected as Senator of New York?

4. What did Hillary Clinton do in 2007?

Think and Respond

What legacy will Hillary Clinton leave behind for future generations?

Bessie Coleman

Bessie Coleman was the first black woman to receive her pilot's license in the world. "The air is the only place free from prejudice," said Coleman. After receiving her pilot's license in 1922 in France, she returned to the U.S. and made her first flight as an African American woman. During a time in U.S. history when there was discrimination against black people, Coleman became an aviation pioneer. She performed stunts, parachuted and did flying trick aerial shows. While practicing for one show, her plane crashed and Coleman was killed. Bessie was only 34 years old.

Vocabulary Practice

Write the correct synonym and antonym from the group of words to match the given vocabulary words.

<table>
<thead>
<tr>
<th>vocabulary word</th>
<th>synonym</th>
<th>antonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>prejudice</td>
<td></td>
<td></td>
</tr>
<tr>
<td>performed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pioneer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

demonstrated hid racism
tolerance leader bystander

Comprehension Practice

1. Why was Bessie Coleman famous?

2. Where did Bessie receive her pilot's license?

3. What do you think Bessie meant when she said, "The air is the only place free from prejudice?"

Think and Respond

What legacy did Bessie Coleman leave behind for future generations?
Marie Curie

Marie Curie was born on November 7, 1867 in Warsaw, Poland. She was a diligent student and decided to become a scientist. She and her husband, Pierre, studied X-rays and conducted experiments with uranium. The Curies both won the Nobel Peace Prize for their work with radiation in 1903. Marie also uncovered two brand new elements during her experiments with radiation. She named them polonium and radium. Eight years later, Marie won a second Nobel Peace Prize.

Vocabulary Practice

Use the context clues in the passage to help you determine the meaning of the underlined word. Circle your answer.

1. She was a diligent student and decided to become a scientist.
 a. lazy b. happy c. studious

2. She and her husband, Pierre studied x-rays and conducted experiments with uranium.
 a. managed b. ignored c. watched

3. Marie also uncovered two brand new elements during her experiments...
 a. broke b. ignored c. discovered

Comprehension Practice

1. Where was Marie Curie born?

2. What job did Marie Curie have?

3. What two elements did Marie Curie discover?

4. What prize did Marie Curie win?

Think and Respond

What legacy did Marie Curie leave behind for future generations?
Phillis Wheatley

Phillis Wheatley was a talented poet during Revolutionary War times. She said, "The world is a severe schoolmaster, for its frowns are less dangerous than its smiles and flatteries." Born in Africa, Phillis was taken and enslaved in the colonies. Named after the ship she sailed on by her master, Phillis was an intelligent person. She learned to read and write English. The family she worked for enjoyed the poetry she wrote. They tried to publish twenty-eight of her poems. Since she was black, colonists would not buy them.

Vocabulary Practice

Write the correct synonym and antonym from the group of words to match the given vocabulary words.

<table>
<thead>
<tr>
<th>smart</th>
<th>discard</th>
<th>foolish</th>
</tr>
</thead>
<tbody>
<tr>
<td>print</td>
<td>smile</td>
<td>pout</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>vocabulary word</th>
<th>synonym</th>
<th>antonym</th>
</tr>
</thead>
<tbody>
<tr>
<td>frown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>intelligent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>publish</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comprehension Practice

1. What did Phillis Wheatley write?

2. Where was Phillis Wheatley born?

3. What was Phillis named after?

4. Why wouldn’t the colonists buy Phillis Wheatley’s poetry?

Think and Respond

What legacy did Phillis Wheatley leave behind for future generations?
Eunice Kennedy Shriver

“Looks fade. Brains don’t,” said Eunice Kennedy Shriver. During a time in US history when people were not as inclusive of others with disabilities, Shriver helped to change that. She began by running Camp Shriver. In 1968, Eunice began the Special Olympics, an athletic event for people with special needs to compete. Inspired by her sister, Rosemary, who had a mild intellectual disability, Shriver worked tirelessly for health improvement and to help children with special needs. She believed in providing opportunities, no matter how many challenges people faced.

Vocabulary Practice

Use the context clues in the passage to help you determine the meaning of the underlined word. Circle your answer.

1. Shriver worked tirelessly for health improvement and to help children with...
 - a. lazily
 - b. fiercely
 - c. slowly

 - a. shine
 - b. disappear
 - c. grow

3. Inspired by her sister, Rosemary, who had a mild intellectual disability...
 - a. defect
 - b. strength
 - c. benefit

Comprehension Practice

1. What did Eunice begin in 1968?

2. Who inspired Eunice?

3. What kind of children did Eunice help?

4. What was the name of the camp Eunice ran?

Think and Respond

What legacy did Eunice Kennedy Shriver leave behind for future generations?
Soil

Soil is the upper layer of earth where plants grow. It consists of a mixture of weathered rock, minerals, and a variety of living and dead life forms. Soil has developed over hundreds of millions of years, as the forces of weather have ground the top rocky layer of the Earth into smaller and finer particles.

There are three main types of soil. One type of soil is clay. It often has a reddish color and absorbs a lot of water. Its particles are very small. When it's dry it feels smooth, and when it's wet it feels sticky. Another type of soil is sand. It is often a light color, almost white. Water passes through sand quickly. It is made of large particles. Sandy soil feels rough when you rub it between your fingers. The third soil type is loam. It is often dark brown or black. Loam is a combination of sandy soil and clay. Loam stays moist while allowing drainage and air circulation. It has medium size particles. Loam is the best soil for growing plants.

<table>
<thead>
<tr>
<th>Number of Words Read</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Attempt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Attempt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Attempt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Soil

Answer each question in a complete sentence. Underline or highlight where you located the answer in the text.

1. What is soil made of? ____________________________

2. What type of soil has the smallest particles? ________________

3. What type of soil allows water to pass through quickly? _______

4. What type of soil is best for growing plants? ________________

5. Use the graphic organizer to describe the three types of soil.
Erosion and Weathering

Weathering and erosion are constantly changing the earth's surface. Weathering is the process of breaking rocks apart into smaller and smaller pieces. Plants, ice, and wind can cause weathering. Some weathering happens when plants break up rocks with their growing roots. Ice causes weathering when water gets into cracks inside rocks and freezes. The ice expands and the cracks are opened wider until the rocks break into smaller rocks. Wind can cause weathering when pieces of sand rub against rocks. This can smooth rocks and even form arches. Rivers are responsible for carving canyons through mountains. Weathering is usually a slow process that takes thousands of years.

Erosion is the movement of weathered rocks and soil. Erosion happens when small rocks and gravel are picked up and moved to another place by ice, water, or wind. Sometimes erosion happens very fast because of storms, but in most situations, erosion happens very slowly.

<table>
<thead>
<tr>
<th>Number of Words Read</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Attempt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Attempt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Attempt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Weathering and Erosion

Answer each question in a complete sentence. Underline or highlight where you located the answer in the text.

1. What is weathering? _______________________

2. How can wind cause weathering? _______________________

3. What creates canyons? _______________________

4. What is erosion? _______________________

5. Write a paragraph to compare and contrast weathering and erosion.

Fossils

Fossils are the remains of plants and animals. All fossils were formed at least 10,000 years ago. They can tell us many things about plants and animals from long ago.

Body fossils are the remains of a plant or animal’s body. For an animal to become a fossil, it would have been quickly buried after its death. Sediments would cover the remains. The parts of the animals that didn’t decay would be buried. After a long time, the minerals would replace the bone.

Other small body fossils are found in amber, a hardened form of tree sap. Trace fossils are the remains of an animal, such as footprints and nests. An imprint is a mold of a leaf or other thin object.

A paleontologist is a scientist who studies fossils. They can use fossils to find how an animal looked and lived. They can build the skeletons of dinosaurs to show how large the animal was and how it moved. The skeletons can also tell us the types of food the animals ate.

<table>
<thead>
<tr>
<th>Number of Words Read</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Attempt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Attempt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Attempt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fossils

Answer each question in a complete sentence. Underline or highlight where you located the answer in the text.

1. Who are fossils?

2. What are body fossils?

3. What is amber?

4. Who is a paleontologist?

5. In a paragraph, describe what we can learn from fossils.
Heat

We can see and feel examples of heat all around us. We can feel heat when we go outside in the sunshine. The Sun is the most important source of heat on earth, and nearly all-living things rely on the Sun in order to survive. Heat energy from the sun is called solar energy.

There are many different ways heat is produced. One way to produce heat is through a chemical reaction, such as burning. A fuel is something that can be burned for heat and energy. Wood, coal, oil, and gas are all examples of fuels. Our bodies produce heat through a chemical reaction in the digestive system. Friction is another source of heat. When two things rub together, they create friction. You can feel this type of heat when you rub your hands together or rub a piece of sandpaper on wood. The inside of the earth also produces heat, which results in volcanoes and geysers. Heat is frequently produced through electricity.
Heat

Answer each question in a complete sentence. Underline or highlight where you located the answer in the text.

1. What do we call heat energy from the sun?

2. What is an example of a chemical reaction?

3. How is friction produced?

4. Where does the heat from volcanoes come from?

5. In a paragraph describe why solar energy is the most important source of heat on Earth.
Insulators and Conductors

Heat moves differently through different surfaces, and it always moves from hot to cold. On a hot day, you shut your doors to keep the heat outside from moving inside. On a cold day, you shut your doors to keep the heat inside from moving outside.

A conductor helps heat to move quickly through an object. Metals are usually great conductors. Conductors are useful for cooking or whenever you want something to heat up quickly. That is why pots and pans are made of metal.

An insulator slows heat down, so heat cannot move quickly through the material. We use insulators to help keep us warm or to keep us cool. We wear insulators as sweaters and jackets in the wintertime. We use them as potholders when we cook to keep our hands from burning. Many people use insulators in lunchboxes to keep their food either hot or cold. Wool and foam are often used as insulators.

<table>
<thead>
<tr>
<th>Number of Words Read</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Attempt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Attempt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Attempt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Insulator and Conductor

Answer each question in a complete sentence. Underline or highlight where you located the answer in the text.

1. What is a conductor?___

2. What is an insulator?___

3. When do you need an insulator?___

4. How does heat move?__

5. In a paragraph compare and contrast conductors and insulators.

Levels of Government

Government is a group that sets laws and runs a community. Local government is what leads a town or city. State government is what leads a state. National government leads the entire country. Laws may differ between communities, states, and the nation. Local and state laws cannot conflict with national laws. The mayor is the elected leader of local government. Some communities also have city councils. The local government runs the school system, organizes emergency services, and sets laws to keep its members safe. The state government runs the entire state. The governor is the elected leader of a state government. Each state also elects two senators and representatives to represent their state in the national government. State government is in charge of the state's education and health systems, protecting the state's environment, and building and maintaining roads. National government protects our country and our freedoms.

<table>
<thead>
<tr>
<th>Number of Words Read</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Attempt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Attempt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Attempt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Levels of Government

Answer each question in a complete sentence. Underline or highlight where you located the answer in the text.

1. What is government?

2. What are the three levels of government?

3. Who is the leader of state government?

4. Which level of government protects our country?

5. Write an opinion paragraph that explains which level of government you believe is most important.
Executive Branch

The leader of the executive branch of our national government is the President of the United States. He or she is both the head of state and the Commander-in-Chief of the US armed forces. One of the main powers of the President is the power to sign legislation from Congress into law or to veto it. A veto means that the President does not agree with the bill. One of the jobs of the President is to enforce the laws set in place by Congress. Other responsibilities of the President include meeting with other nations, including signing treaties.

The leader of the executive branch of state government is the governor. Citizens of a state elect a governor every four years. He or she is responsible for signing or vetoing bills written by the STATE legislature.

The leader of the executive branch of local government is the mayor. The mayor leads city council meetings and is considered the head of the city.

<table>
<thead>
<tr>
<th>Number of Words Read</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Attempt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Attempt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Attempt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Executive Branch

Answer each question in a complete sentence. Underline or highlight where you located the answer in the text.

1. Who is the leader of the executive branch of national government?

2. Who is the leader of the executive branch of state government?

3. Who is the leader of the executive branch of local government?

4. Who writes the laws the governor signs?

5. In an informational paragraph, describe the role of the president.
Legislative Branch

The legislative branch for our national government is also called Congress. There are two parts that make up Congress: the House of Representatives and the Senate. Each state has a different number of representatives depending on their total population. States with more people get more representatives. Each state has two Senators, so the Senate has 100 members. The legislative branch of the government writes laws. Congress has other responsibilities and powers such as creating a budget for the government and taxing the citizens to pay for the budget. Another important congressional power is the power to declare war.

There is also a legislative branch of state government, that is sometimes called the General Assembly. In state government, there is state Senate and a state House of Representatives. They are responsible for writing state laws. The legislative branch of local government is called the city council or county commission.

<table>
<thead>
<tr>
<th>Number of Words Read</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Attempt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Attempt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Attempt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Legislative Branch

Answer each question in a complete sentence. Underline or highlight where you located the answer in the text.

1. What is another name for the legislative branch of national government? ________________________________

2. What are the two parts of Congress? ________________________________

3. What is that legislative branch of state government sometimes called? ________________________________

4. What is the state legislative branch responsible for? ________________________________

5. In an informational paragraph, describe the legislative branch's responsibilities of national government.

__

__

__

__

__
The judicial branch of government is made up of judges and courts. At the top of the judicial branch is the Supreme Court. Supreme Court justices are appointed for life. They can only be removed from office by death or by Congress. This is so they can make decisions based on what they think is right and not on what they feel they need to do to get elected. The job of the courts is to interpret the laws written by Congress. The justices do not make laws.

If accused of a crime, a person has the right to a fair trial before a judge and a jury. If the jury determines that a person is not-guilty, then charges are dropped. If there is a guilty verdict, the judge determines the punishment. If one feels that the trial wasn't handled fairly, they can appeal to a higher court.
Judicial Branch

Answer each question in a complete sentence. Underline or highlight where you located the answer in the text.

1. What makes up the judicial branch of government?

2. What is the highest court in the United States?

3. What rights do a person accused of a crime have?

4. What are some of the responsibilities of the judicial branch?

5. In an opinion paragraph, explain whether you think it is better for Supreme Court justices to be appointed or elected.
Longitude and Latitude

Latitude and longitude are imaginary lines drawn on maps. Lines of latitude run east to west and help us locate places on the earth. Latitude measures distance north or south of the equator. The equator is an imaginary circle around the earth halfway between the North Pole and the South Pole. The equator shows the line of zero degrees latitude. It is the starting point for measuring latitude. Anything above the equator is in the northern hemisphere, and everything below the equator is in the southern hemisphere.

Lines of longitude run north and south. Longitude is distance east or west of the prime meridian. The prime meridian is an imaginary line running from north to south through Greenwich, England. Everything to the right of the prime meridian is in the eastern hemisphere, and everything to the west of the prime meridian is in the western hemisphere.

<table>
<thead>
<tr>
<th>Number of Words Read</th>
<th>Monday</th>
<th>Tuesday</th>
<th>Wednesday</th>
<th>Thursday</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Attempt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2nd Attempt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd Attempt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Longitude and Latitude

Answer each question in a complete sentence. Underline or highlight where you located the answer in the text.

1. What direction do lines of longitude run?

2. What direction do lines of latitude run?

3. How are longitude and latitude lines measured?

4. Where is the prime meridian located?

5. Add and label the equator and prime meridian on the map below.
Monday

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Write the number 100,000 more than this number.</td>
<td>2. Write the expression as a fraction.</td>
<td>5. The picture below shows the amount of money in 3 banks.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$2.32 $1.08 $2.60</td>
</tr>
</tbody>
</table>

Mrs. Doe emptied all three banks and put the money into two equal groups. How much was in each group?

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Solve.</td>
<td>4. What time is 2 hr., 43 min. past the time shown?</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5,445</td>
<td>3:00</td>
<td></td>
</tr>
</tbody>
</table>

Tuesday

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Write the number 100,000 less than this number.</td>
<td>2. Write the expression as a fraction.</td>
<td>5. The picture below shows the number of candies in 2 jars.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>28 candies 12 candies</td>
</tr>
</tbody>
</table>

Christian emptied both bags and put the candies into 8 equal groups. How many candies were in each group?

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Solve.</td>
<td>4. What time is 1 hr., 6 min. past the time shown?</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,290</td>
<td>3:00</td>
<td></td>
</tr>
</tbody>
</table>

Wednesday

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Write the number 50,000 less than this number.</td>
<td>2. Write the expression as a fraction.</td>
<td>5. The picture below shows the number of jewels in 3 treasure chests.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>17 jewels 24 jewels 9 jewels</td>
</tr>
</tbody>
</table>

Five explorers plan to share them equally. How many jewels does each get?

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Solve.</td>
<td>4. What time is 2 hr., 47 min. past the time shown?</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8,672</td>
<td>3:00</td>
<td></td>
</tr>
</tbody>
</table>
THURSDAY

1. Write the number 100,000,000 less than this number.

 4,785,445,300

2. Write the expression as a fraction.

 \[\frac{4}{9} \]

3. Solve.

 3,507 - 1,545

4. What time is 6 hr., 3 min. past the time shown?

 [Clock with time shown]

5. The picture below shows the number of pages in 3 books.

 - 143 pages
 - 212 pages
 - 145 pages

Marc has 5 days to finish the books. If he wants to read an equal number of pages each day, how many should he read per day to finish in time?

FRIDAY

1. Write the number 10,000 more than this number.

 1,862,542,366

2. Write the expression as a fraction.

 \[\frac{3}{5} \]

3. Solve.

 5,400 + 1,482

4. What time is 4 hr., 12 min. past the time shown?

 [Clock with time shown]

5. The picture below shows the number of candies in 3 bags.

 - 20 candies
 - 38 candies
 - 42 candies

Mandy emptied the bags and put the candies into 10 equal groups. How many candies were in each group?

CORRECTION #1

REFLECT: How did the pictures help you solve the problems for box 5?

CORRECTION #2

TEACHER NOTES:

GRADE: [Grade]
<table>
<thead>
<tr>
<th>MONDAY</th>
<th>TUESDAY</th>
<th>WEDNESDAY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Convert to expanded form. 4,785,445,300</td>
<td>1. Convert to expanded form. 485,124,300</td>
<td>1. Convert to expanded form. 125,524,780</td>
</tr>
<tr>
<td>2. Draw a set of shapes where $\frac{2}{3}$ of the shapes are squares.</td>
<td>2. Draw a set of shapes where $\frac{2}{3}$ of the shapes are circles.</td>
<td>2. Draw a set of shapes where $2/3$ of the shapes are rectangles.</td>
</tr>
<tr>
<td>3. Solve. $7.4 + 4.5 + 9.2$</td>
<td>3. Solve. $9.12 + 5.78 + 6.01$</td>
<td>3. Solve. $0.53 + 0.05 + 5.20$</td>
</tr>
<tr>
<td>4. Write the temperature.</td>
<td>4. Write the temperature in Fahrenheit.</td>
<td>4. Write the temperature.</td>
</tr>
<tr>
<td>5. A bag of snack mix has 21 pieces. Of these 5 are pretzels, seven are cheese crackers, 4 are candies, and five are rye chips. What fraction of the snack mix is –</td>
<td>5. A golf course has 18 holes. Of these 4 are par fours, 5 are par threes, and 9 are par fives. What fraction of the holes are –</td>
<td>5. A bag of Skittles has 8 reds, 9 greens, 5 purples, and 6 yellows. What fraction of the Skittles are –</td>
</tr>
<tr>
<td>rye chips?</td>
<td>par threes?</td>
<td>yellow?</td>
</tr>
<tr>
<td>crackers?</td>
<td>par fours?</td>
<td>red?</td>
</tr>
<tr>
<td>candies?</td>
<td>par fives?</td>
<td>green?</td>
</tr>
<tr>
<td>THURSDAY</td>
<td>FRIDAY</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
<td></td>
</tr>
</tbody>
</table>
| 1. Convert to expanded form.
908,506,742 | 1. Convert to expanded form.
1,025,004,032 |
| 2. Draw a set of shapes where 4/6 of the shapes are rectangles. | 2. Draw a set of shapes where 2/3 of the shapes are triangles. |
| 3. Solve.
20.53 + 1.55 + .02 | 3. Solve.
6.03 + 0.55 + 1.12 |
| 4. Write the temperature in Celsius. | 4. Write the temperature in Celsius. |
| 5. A box of donuts has 3 chocolate, 4 glazed, 2 lemon-filled, and 4 custard-filled. What fraction of the box is –
custard-filled? | 5. A box of mechanical pencils has 3 blue pencils, 4 green pencils, and 2 pink pencils. What fraction of the pencils are –
pink? |
| glazed? | blue? |
| chocolate? | green? |

REFLECT & GROW

CORRECTION #1

REFLECT: Which question was easiest this week? Why do you think it was so simple for you?

CORRECTION #2

TEACHER NOTES:

GRADE:
Adding two 2-digit numbers, two-step regrouping.

Example: $.57 \\
 + .64 \\
 $1.21

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$.47</td>
<td>$.26</td>
<td>$.65</td>
<td>$.27</td>
</tr>
<tr>
<td></td>
<td>+ .83</td>
<td>+ .94</td>
<td>+ .65</td>
<td>+ .84</td>
</tr>
<tr>
<td>2</td>
<td>$.95</td>
<td>$.88</td>
<td>$.78</td>
<td>$.88</td>
</tr>
<tr>
<td></td>
<td>+ .26</td>
<td>+ .84</td>
<td>+ .94</td>
<td>+ .34</td>
</tr>
<tr>
<td>3</td>
<td>$.64</td>
<td>$.56</td>
<td>$.87</td>
<td>$.75</td>
</tr>
<tr>
<td></td>
<td>+ .76</td>
<td>+ .94</td>
<td>+ .43</td>
<td>+ .57</td>
</tr>
<tr>
<td>4</td>
<td>$.57</td>
<td>$.98</td>
<td>$.57</td>
<td>$.88</td>
</tr>
<tr>
<td></td>
<td>+ .89</td>
<td>+ .76</td>
<td>+ .94</td>
<td>+ .88</td>
</tr>
<tr>
<td>5</td>
<td>$.76</td>
<td>$.95</td>
<td>$.73</td>
<td>$.55</td>
</tr>
<tr>
<td></td>
<td>+ .75</td>
<td>+ .28</td>
<td>+ .89</td>
<td>+ .68</td>
</tr>
<tr>
<td>6</td>
<td>$.56</td>
<td>$.67</td>
<td>$.87</td>
<td>$.94</td>
</tr>
<tr>
<td></td>
<td>+ .56</td>
<td>+ .35</td>
<td>+ .46</td>
<td>+ .98</td>
</tr>
</tbody>
</table>
Adding two 3-digit numbers, one-step regrouping.

Example: $6.38 + 2.27 = 8.65$

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>6.25</td>
<td>1.35</td>
<td>2.46</td>
</tr>
<tr>
<td></td>
<td>+ 2.36</td>
<td>+ 1.38</td>
<td>+ 3.27</td>
</tr>
<tr>
<td>2.</td>
<td>5.24</td>
<td>2.67</td>
<td>7.46</td>
</tr>
<tr>
<td></td>
<td>+ 2.38</td>
<td>+ 1.29</td>
<td>+ 1.26</td>
</tr>
<tr>
<td>3.</td>
<td>4.52</td>
<td>6.36</td>
<td>3.77</td>
</tr>
<tr>
<td></td>
<td>+ 2.38</td>
<td>+ 1.48</td>
<td>+ 2.07</td>
</tr>
<tr>
<td>4.</td>
<td>2.66</td>
<td>1.15</td>
<td>2.17</td>
</tr>
<tr>
<td></td>
<td>+ 3.24</td>
<td>+ 1.35</td>
<td>+ 2.49</td>
</tr>
<tr>
<td>5.</td>
<td>3.18</td>
<td>6.17</td>
<td>1.45</td>
</tr>
<tr>
<td></td>
<td>+ 2.17</td>
<td>+ 2.69</td>
<td>+ 3.36</td>
</tr>
<tr>
<td>6.</td>
<td>7.15</td>
<td>8.24</td>
<td>7.49</td>
</tr>
<tr>
<td></td>
<td>+ 2.06</td>
<td>+ 1.36</td>
<td>+ 2.09</td>
</tr>
</tbody>
</table>
Adding two 3-digit numbers, one-step regrouping.

1. $5.27 + 2.64$
 $8.32 + 1.28$
 $1.59 + 2.27$
 $2.39 + 1.29$

2. $8.27 + 1.58$
 $1.64 + 1.09$
 $2.77 + 1.18$
 $4.25 + 3.65$

3. $5.23 + 1.68$
 $1.16 + 2.57$
 $4.31 + 4.09$
 $2.57 + 6.33$

4. $6.38 + 2.44$
 $3.26 + 2.65$
 $7.04 + 2.57$
 $6.48 + 1.38$

5. $2.63 + 4.17$
 $3.26 + 4.64$
 $2.07 + 5.46$
 $5.63 + 2.08$

6. $5.26 + 3.49$
 $7.86 + 1.06$
 $6.59 + 1.11$
 $4.24 + 2.27$
Adding two 4-digit numbers, two or more regrouping steps.

Example: $62.35
 + 29.85
 $ 92.20

1. $23.65 $30.56 $47.55 $32.57
 + 14.66 + 28.74 + 38.45 + 18.46

2. $30.46 $20.28 $33.44 $24.68
 + 23.74 + 14.72 + 16.78 + 55.74

3. $60.82 $73.56 $18.68 $63.44
 + 29.29 + 11.74 + 12.56 + 27.97

4. $63.25 $21.07 $45.63 $22.75
 + 26.76 + 18.98 + 27.67 + 14.39

5. $68.76 $27.48 $25.79 $57.73
 + 11.69 + 13.94 + 18.81 + 17.77

6. $53.83 $27.95 $42.26 $42.72
 + 24.38 + 18.74 + 28.78 + 19.98
Remembering

Solve for \(n \) or \(d \).

1. \(\frac{1}{6} = \frac{n}{24} \)

2. \(\frac{3}{4} = \frac{15}{d} \)

3. \(\frac{9}{54} = \frac{1}{d} \)

4. \(\frac{10}{18} = \frac{n}{9} \)

5. \(\frac{3}{7} = \frac{18}{d} \)

6. \(\frac{3}{5} = \frac{n}{40} \)

7. \(\frac{27}{36} = \frac{n}{4} \)

8. \(\frac{14}{49} = \frac{2}{d} \)

9. \(\frac{5}{6} = \frac{n}{48} \)

10. \(\frac{1}{3} = \frac{20}{d} \)

11. \(\frac{21}{56} = \frac{3}{d} \)

12. \(\frac{20}{25} = \frac{n}{5} \)

Add or subtract.

13. \(\frac{1}{3} + \frac{2}{3} \)

14. \(\frac{3}{5} - \frac{1}{5} \)

15. \(\frac{6}{8} + \frac{3}{8} \)

16. \(\frac{7}{15} + \frac{2}{5} \)

17. \(\frac{5}{6} + \frac{2}{5} \)

18. \(\frac{7}{15} + \frac{2}{5} \)

19. \(\frac{3}{4} \bigcirc \frac{6}{7} \)

20. \(\frac{7}{15} \bigcirc \frac{2}{5} \)

21. \(\frac{1}{8} \bigcirc \frac{3}{20} \)

22. \(\frac{6}{100} \bigcirc \frac{6}{101} \)

23. \(\frac{19}{20} \bigcirc \frac{20}{21} \)

24. \(\frac{19}{20} \bigcirc \frac{20}{21} \)

25. \(\frac{4}{5} \bigcirc \frac{7}{9} \)

26. In a hockey game, Seth took 12 shots and scored 3 times. Zak took 10 shots and scored twice. Who scored on a greater fraction of his shots?

27. Stretch Your Thinking Last season, Jenny made 3 out of every 4 free throws she took. If she took 48 free throws, how many did she make?

Show your work.
Add.

1. \(\frac{1}{3} + \frac{1}{2} \)
2. \(\frac{7}{10} + \frac{1}{5} \)
3. \(\frac{2}{9} + \frac{1}{6} \)

4. \(\frac{5}{32} + \frac{1}{4} \)
5. \(\frac{1}{6} + \frac{2}{3} \)
6. \(\frac{5}{11} + \frac{1}{2} \)

7. \(\frac{3}{16} + \frac{3}{4} \)
8. \(\frac{3}{7} + \frac{1}{3} \)
9. \(\frac{5}{12} + \frac{3}{8} \)

Solve.

10. Of the people who attended the school play, \(\frac{5}{12} \) were students and \(\frac{1}{8} \) were teachers. What fraction of the total audience were students or teachers?

11. Mara bought \(\frac{2}{3} \) yard of yellow ribbon and \(\frac{1}{4} \) yard of blue ribbon. How many yards of ribbon did she buy altogether?

12. For breakfast, Oliver drank \(\frac{5}{16} \) of a pitcher of juice. His brother Joey drank \(\frac{3}{8} \) of the pitcher of juice. What fraction of a pitcher did they drink together?

13. A recipe calls for \(\frac{1}{3} \) cup of brown sugar and \(\frac{3}{4} \) cup of white sugar. How much sugar is this altogether?
Write each fraction as a mixed number.
1 \(\frac{11}{5} = \)
2 \(\frac{21}{8} = \)
3 \(\frac{57}{6} = \)

Write each mixed number as a fraction.
4 \(1\frac{5}{6} = \)
5 \(11\frac{2}{3} = \)
6 \(6\frac{1}{9} = \)

Add or subtract.
7 \(\frac{3}{7} + \frac{2}{7} = \)
8 \(\frac{7}{10} - \frac{3}{10} = \)
9 \(\frac{3}{10} + \frac{2}{5} = \)
10 \(2\frac{1}{6} + 3\frac{5}{6} = \)
11 \(6\frac{11}{12} - 2\frac{5}{12} = \)
12 \(5\frac{1}{3} - 1\frac{2}{3} = \)
13 \(4\frac{3}{4} + 4\frac{3}{4} = \)
14 \(4 - 3\frac{5}{8} = \)
15 \(\frac{3}{11} + \frac{1}{3} = \)

Solve.
16 Ayala and Sam were partners on a science project. Ayala spent 2\(\frac{3}{4}\) hours working on the project. Sam spent 1\(\frac{3}{4}\) hours working on the project. How long did they work altogether?

17 Stretch Your Thinking Marti grouped all her CDs into separate categories. She said, "\(\frac{2}{5}\) of my CDs are rock music, \(\frac{1}{6}\) are jazz, \(\frac{1}{3}\) are hip hop, and \(\frac{1}{4}\) are country music." Explain why Marti's statement cannot be correct.
Subtract.

1. \(\frac{1}{3} - \frac{1}{7} \)

2. \(\frac{4}{5} - \frac{8}{15} \)

3. \(\frac{5}{6} - \frac{2}{9} \)

4. \(\frac{61}{100} - \frac{7}{25} \)

5. \(\frac{4}{7} - \frac{1}{6} \)

6. \(\frac{6}{11} - \frac{1}{2} \)

Circle the greater fraction. Then write and solve a subtraction problem to find the difference of the fractions.

7. \(\frac{9}{10} \quad \frac{11}{12} \)

8. \(\frac{5}{18} \quad \frac{1}{3} \)

Solve.

9. Marly passes the library on her way to school. The distance from Marly’s house to the library is \(\frac{3}{8} \) mile. The distance from Marly’s house to the school is \(\frac{4}{5} \) mile. How far is it from the library to Marly’s school?

10. Tim spends about \(\frac{1}{3} \) of each weekday sleeping and about \(\frac{7}{24} \) of each weekday in school.

 a. What fraction of a weekday does Tim spend either sleeping or in school?

 b. Is this more or less than \(\frac{1}{2} \) a day?

 c. How much more or less?
The balls fell out of the coach's net! Help the coach collect the balls by writing the numbers in order from greatest to least. Then color the balls that have even numbers.

Underline the ones place. If the number ends in a 0, 2, 4, 6, 8, the number will always be even. If it ends in a 1, 3, 5, 7, 9, the number will always be odd.

Greatest

Least

Ordering and comparing numbers
Winning Patterns

The pattern is counting by 4's!

Look at the numerals on the jerseys below. Find the pattern for each row and continue it.

After you've completed each pattern, color the jerseys with even numbers blue and the jerseys with odd numbers yellow.

How many even-numbered jerseys are there? ___________

How many odd-numbered jerseys are there? ___________
Icing the Equations

Write the correct symbol (<, >, =, +, −, ×, ÷) to make each sentence true.

\[\begin{align*}
48 &\quad \square \quad 62 \\
79 &\quad \square \quad 7 = 72 \\
417 &\quad \square \quad 389 + 28 \\
573 &\quad \square \quad 357 \\
208 &\quad \square \quad 179 \\
9 &\quad \square \quad 5 = 14 \\
7 \times 6 &\quad \square \quad 9 \times 9 \\
4 &\quad \square \quad 9 = 36 \\
60 &\quad \square \quad 5 = 12 \\
8 \times 6 &\quad \square \quad 7 \times 4 \\
108 + 9 &\quad \square \quad 120 \\
40 &\quad \square \quad 12 \times 3 \\
9 \times 7 &\quad \square \quad 12 \times 5 \\
306 &\quad \square \quad 53 = 253 \\
9 \times 8 &\quad \square \quad 12 \times 5 \\
32 \div 4 &\quad \square \quad 40 \div 5
\end{align*}\]

Write <, >, or = to complete each number sentence. Remember to do what is in parentheses first!

\[\begin{align*}
(12 - 5) + 2 &\quad \square \quad (7 - 5) + 8 \\
7 + (6 \times 3) &\quad \square \quad (4 \times 3) + 5 \\
(12 \div 6) + 9 &\quad \square \quad 8 + (24 \div 3) \\
2 + (16 + 3) &\quad \square \quad (18 + 3) - 8 \\
(6 \times 3) + 5 &\quad \square \quad (14 \div 7) + 5 \\
4 + (7 - 2) &\quad \square \quad 6 + (10 + 5) \\
(6 \times 8) + 2 &\quad \square \quad (35 - 5) + 10 + 10 \\
5 + 6 + (4 \times 5) &\quad \square \quad (10 - 5) \times 5 \\
(13 + 4) - 7 &\quad \square \quad (7 \times 2) + 9 \\
8 + (24 \div 6) &\quad \square \quad 9 \times (7 + 4) \\
(56 \div 8) + 12 &\quad \square \quad 48 + (4 \times 3) \\
5 + (6 \times 12) &\quad \square \quad 81 \div (16 - 7) \\
14 + (7 \times 3) &\quad \square \quad 36 - (5 \times 3) \\
36 - (4 \times 7) &\quad \square \quad (9 \times 6) - 25 \\
8 \times (4 \times 2) &\quad \square \quad (7 \times 7) + 15 \\
4 \times (6 + 3) &\quad \square \quad 5 + (8 \times 2)
\end{align*}\]
Complete each number sentence using addition, subtraction, multiplication, or division.

Examples: \(6 + 2 = 8 \) \(6 - 2 = 4 \) \(6 \times 2 = 12 \) \(6 + 2 = 3 \)

\[
\begin{align*}
6 & _7 = 42 \\
10 & _7 = 3 \\
15 & _5 = 10 \\
9 & _8 = 72 \\
27 & _9 = 3 \\
48 & _6 = 8 \\
42 & _7 = 6 \\
60 & _5 = 12 \\
23 & _5 = 28 \\
19 & _15 = 4 \\
36 & _6 = 6 \\
9 & _7 = 63 \\
27 & _9 = 3 \\
12 & _3 = 15 \\
11 & _4 = 44 \\
18 & _6 = 12 \\
23 & _7 = 16 \\
20 & _5 = 4 \\
81 & _9 = 9 \\
16 & _4 = 4 \\
63 & _7 = 9 \\
4 & _5 = 19 \\
8 & _12 = 96 \\
8 & _8 = 64 \\
13 & _6 = 7 \\
23 & _7 = 30 \\
24 & _3 = 8 \\
27 & _9 = 18
\end{align*}
\]
Numbers in Flight

Round the numbers to the nearest tens, hundreds, or thousands.

<table>
<thead>
<tr>
<th>Tens</th>
<th>Hundreds</th>
<th>Thousands</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>418</td>
<td>6,212</td>
</tr>
<tr>
<td>26</td>
<td>514</td>
<td>2,578</td>
</tr>
<tr>
<td>15</td>
<td>1,232</td>
<td>5,371</td>
</tr>
<tr>
<td>367</td>
<td>2,785</td>
<td>9,786</td>
</tr>
<tr>
<td>274</td>
<td>6,071</td>
<td>1,321</td>
</tr>
<tr>
<td>78</td>
<td>942</td>
<td>4,736</td>
</tr>
<tr>
<td>49</td>
<td>237</td>
<td>7,439</td>
</tr>
<tr>
<td>63</td>
<td>673</td>
<td>8,742</td>
</tr>
<tr>
<td>72</td>
<td>52</td>
<td>9,417</td>
</tr>
<tr>
<td>118</td>
<td>3,088</td>
<td>10,714</td>
</tr>
</tbody>
</table>

Underline the place that it asks you to round. Look to the right of the underlined number. If the number is 5 or more, let it soar. If the number is 4 or less, let it rest.

Rounding numbers to tens, hundreds, and thousands
Keeping Score

The scores below are written in standard form. Use the code to write them in Roman numeral form.

<table>
<thead>
<tr>
<th>HOME</th>
<th>VISITORS</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>17</td>
<td>6</td>
</tr>
<tr>
<td>23</td>
<td>31</td>
</tr>
<tr>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>33</td>
</tr>
<tr>
<td>36</td>
<td>22</td>
</tr>
<tr>
<td>24</td>
<td>37</td>
</tr>
<tr>
<td>50</td>
<td>38</td>
</tr>
<tr>
<td>34</td>
<td>48</td>
</tr>
<tr>
<td>43</td>
<td>50</td>
</tr>
<tr>
<td>54</td>
<td>27</td>
</tr>
</tbody>
</table>

Roman Numeral Code:

<table>
<thead>
<tr>
<th>I = 1</th>
<th>IV = 4</th>
<th>V = 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>IX = 9</td>
<td>X = 10</td>
<td>XV = 15</td>
</tr>
<tr>
<td>XX = 20</td>
<td>XXX = 30</td>
<td>XL = 40</td>
</tr>
<tr>
<td>L = 50</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Story Problem Stumpers!

Solve the problems.

1. Susan is making a list of numbers whose digits have a sum of 20. Cross out the number that should not be included on her list.

 5,537 66,404 9,041 992 7,274

2. Mrs. Clayton was buying treats for her children. She bought $12 worth of cinnamon rolls, $9 worth of candy, $8 worth of cookies, and $10 worth of pretzels. Estimate the total amount of money Mrs. Clayton spent.

3. On Friday, 692 people attended a football game at Wyatt Stadium. On Saturday, 934 people attended a soccer game at the same stadium. Estimate how many more people were at the stadium on Saturday than on Friday.

 Approximately how many people were at the stadium on both days combined?

4. The Carter High School Band has been selling raffle tickets for the past four months in order to buy new uniforms. The band sold 2,571 tickets in September, 982 in October, 1,290 in November, and 5,302 in December. Write the amount of tickets sold for the four months in order from greatest to least.

 About how many raffle tickets did the band sell in all?

5. Lacey received a guitar for Christmas. Her goal is to learn to play well by the summer. She practiced her guitar for 7 hours in January, 10 hours in February, and 13 hours in March. If this pattern continues, how many hours will Lacey practice in April?

 How many will she practice in May?

 What is the pattern?
Tasty Treats

Add. Then use the code to color the treats.

Color Code:

<table>
<thead>
<tr>
<th>Purple</th>
<th>Green</th>
<th>Yellow</th>
</tr>
</thead>
<tbody>
<tr>
<td>under 50</td>
<td>51 to 70</td>
<td>over 70</td>
</tr>
</tbody>
</table>

85 + 27
18 + 18
64 + 59
30 + 23
47 + 21
23 + 35
76 + 62
19 + 43
13 + 27
62 + 52
12 + 29
76 + 62
82 + 17
47 + 17
23 + 46
56 + 37
74 + 43
18 + 37
79 + 42
21 + 19

Adding 2-digit numbers
Add. Circle the sums that are **odd** numbers.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>437</td>
<td>526</td>
<td>612</td>
<td>619</td>
</tr>
<tr>
<td>+324</td>
<td>+437</td>
<td>+378</td>
<td>+846</td>
</tr>
<tr>
<td>708</td>
<td>792</td>
<td>437</td>
<td>809</td>
</tr>
<tr>
<td>+491</td>
<td>+279</td>
<td>+809</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>884</td>
<td>987</td>
<td>807</td>
<td>989</td>
</tr>
<tr>
<td>+376</td>
<td>+549</td>
<td>+605</td>
<td>+432</td>
</tr>
<tr>
<td>643</td>
<td>+275</td>
<td>+593</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>322</td>
<td>403</td>
<td>737</td>
<td>812</td>
</tr>
<tr>
<td>+789</td>
<td>+197</td>
<td>+281</td>
<td>+189</td>
</tr>
<tr>
<td>283</td>
<td>+347</td>
<td>+413</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>803</td>
<td>902</td>
<td>543</td>
<td>817</td>
</tr>
<tr>
<td>+379</td>
<td>+188</td>
<td>+179</td>
<td>+723</td>
</tr>
<tr>
<td>425</td>
<td>+578</td>
<td>+337</td>
<td>275</td>
</tr>
</tbody>
</table>

Adding 3-digit numbers; identifying odd and even numbers
Sum Popcorn

Add. Mark an X on the sum if the number is even.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,598</td>
<td>1,234</td>
<td>6,549</td>
<td>1,224</td>
<td>2,232</td>
</tr>
<tr>
<td>+ 5,269</td>
<td>+ 8,529</td>
<td>+ 3,251</td>
<td>+ 9,872</td>
<td>+ 1,094</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,564</td>
<td>7,727</td>
<td>8,521</td>
<td>2,487</td>
<td>3,987</td>
</tr>
<tr>
<td>+ 6,932</td>
<td>+ 1,236</td>
<td>+ 4,562</td>
<td>+ 4,983</td>
<td>+ 1,870</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1,079</td>
<td>2,708</td>
<td>4,805</td>
<td>3,746</td>
<td>5,079</td>
</tr>
<tr>
<td>+ 3,281</td>
<td>+ 1,793</td>
<td>+ 1,389</td>
<td>+ 1,507</td>
<td>+ 1,217</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2,748</td>
<td>6,417</td>
<td>9,009</td>
<td>5,408</td>
<td>8,175</td>
</tr>
<tr>
<td>+ 3,005</td>
<td>+ 3,723</td>
<td>+ 2,703</td>
<td>+ 1,783</td>
<td>+ 7,027</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6,318</td>
<td>5,726</td>
<td>2,275</td>
<td>3,127</td>
<td>4,025</td>
</tr>
<tr>
<td>+ 1,584</td>
<td>+ 2,375</td>
<td>+ 1,750</td>
<td>+ 1,734</td>
<td>+ 5,140</td>
</tr>
</tbody>
</table>

Adding 4-digit numbers; identifying odd and even numbers
Falling Amounts

Subtract.

<table>
<thead>
<tr>
<th>938</th>
<th>657</th>
<th>549</th>
<th>486</th>
<th>748</th>
</tr>
</thead>
<tbody>
<tr>
<td>-337</td>
<td>-426</td>
<td>-146</td>
<td>-346</td>
<td>-315</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>432</th>
<th>860</th>
<th>354</th>
<th>762</th>
<th>388</th>
</tr>
</thead>
<tbody>
<tr>
<td>-212</td>
<td>-630</td>
<td>-121</td>
<td>-341</td>
<td>-157</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>576</th>
<th>927</th>
<th>659</th>
<th>284</th>
<th>743</th>
</tr>
</thead>
<tbody>
<tr>
<td>-145</td>
<td>-203</td>
<td>-438</td>
<td>-272</td>
<td>-430</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>767</th>
<th>849</th>
<th>983</th>
<th>454</th>
<th>788</th>
</tr>
</thead>
<tbody>
<tr>
<td>-564</td>
<td>-317</td>
<td>-831</td>
<td>-213</td>
<td>-273</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>939</th>
<th>748</th>
<th>965</th>
<th>847</th>
<th>876</th>
</tr>
</thead>
<tbody>
<tr>
<td>-427</td>
<td>-536</td>
<td>-145</td>
<td>-346</td>
<td>-533</td>
</tr>
</tbody>
</table>

Subtracting without borrowing
Gardening Troubles

Why was the farmer looking for his keys in the garden?

Solve the problems. Then write the letters below to answer the riddle.

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>Y</th>
<th>H</th>
<th>S</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>92</td>
<td>36</td>
<td>65</td>
<td>93</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>-23</td>
<td>-27</td>
<td>-48</td>
<td>-8</td>
<td>-65</td>
</tr>
<tr>
<td>T</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>T</th>
<th>D</th>
<th>H</th>
<th>N</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>97</td>
<td>75</td>
<td>85</td>
<td>57</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>-59</td>
<td>-29</td>
<td>-18</td>
<td>-49</td>
<td>-13</td>
</tr>
<tr>
<td>T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>O</th>
<th>U</th>
<th>R</th>
<th>E</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>68</td>
<td>46</td>
<td>33</td>
<td>56</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>-39</td>
<td>-18</td>
<td>-19</td>
<td>-8</td>
<td>-15</td>
</tr>
<tr>
<td>O</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>W</th>
<th>H</th>
<th>A</th>
<th>P</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32</td>
<td>41</td>
<td>63</td>
<td>40</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td>-16</td>
<td>-36</td>
<td>-38</td>
<td>-28</td>
<td>-38</td>
</tr>
<tr>
<td>W</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>W</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>74</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>-25</td>
<td>-36</td>
</tr>
</tbody>
</table>

67 48 49 25 85 5 29 12 6 8 19 29 17 48 9 46

38 28 14 13 56 12

Subtracting with borrowing
A Garden of Good Subtraction

Solve the problems. Check your subtraction with addition!

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2,161</td>
<td>1,817</td>
<td>3,712</td>
</tr>
<tr>
<td></td>
<td>1,895</td>
<td>+1,895</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,817</td>
<td>3,712</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7,406</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-3,677</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3,413</td>
</tr>
<tr>
<td></td>
<td>-1,798</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5,935</td>
</tr>
<tr>
<td></td>
<td>-2,329</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3,009</td>
</tr>
<tr>
<td></td>
<td>-1,998</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>6,187</td>
</tr>
<tr>
<td></td>
<td>-2,789</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>4,108</td>
</tr>
<tr>
<td></td>
<td>-2,299</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>2,112</td>
</tr>
<tr>
<td></td>
<td>-998</td>
</tr>
</tbody>
</table>

Round the answers to the subtraction problems to the nearest thousand.

1. _____ 2. _____ 3. _____ 4. _____
5. _____ 6. _____ 7. _____ 8. _____

Checking subtraction with addition; rounding numbers to thousands
Shopping Success

Add. Don’t forget to line up your decimals!

$148.78
+ 16.99
$16.75
+ 23.89
$215.89
+ 347.23
$107.50
+ 341.98

$435.28
+ 143.22
$309.78
+ 477.45
$706.29
+ 88.39
$700.99
+ 199.64

$1,079.52
+ 8,403.78
$2,783.25
+ 103.65
$7,089.18
+ 84.23
$2,307.13
+ 879.56

$9,078.44
+ 3,445.97
$5,655.39
+ 1,454.63
$3,905.17
+ 7,108.82
$8,805.94
+ 6,397.18

After you’ve solved the problems, do the following. (Round to the nearest thousand.)

1. Circle the sums that can be rounded between $1,000 and $5,000.

2. Mark an X on the sums that can be rounded between $6,000 and $10,000.

3. Draw a box around the sums that can be rounded between $11,000 and $15,000.
Fruitful Fun with Decimals

Example:
\[\begin{align*}
4.927 & \quad 3.690 \\
-1.237 & \quad +1.237 \\
\hline
3.690 & \quad 4.927
\end{align*} \]

Remember to line up your decimals!

Subtract. Then use addition to check your answers.

\[\begin{align*}
1.23 & \quad 6.58 & \quad 92.36 \\
-0.16 & \quad + & \quad -3.24 & \quad + & \quad -21.55 & \quad +
\end{align*} \]

\[\begin{align*}
2.36 & \quad 5.03 & \quad 16.25 \\
-1.20 & \quad + & \quad -0.78 & \quad + & \quad -10.16 & \quad +
\end{align*} \]

\[\begin{align*}
85.21 & \quad 52.89 & \quad 17.23 \\
-16.76 & \quad + & \quad -25.13 & \quad + & \quad -16.78 & \quad +
\end{align*} \]

\[\begin{align*}
18.56 & \quad 23.79 & \quad 43.28 \\
-4.74 & \quad + & \quad -16.83 & \quad + & \quad -15.79 & \quad +
\end{align*} \]

Subtracting decimals; checking subtraction with addition
Solve the problems.

1. Blaine saw a computer for $475.00 and a printer for $135.00. He decided this was a good deal and just what he needed. In order to buy the computer, Blaine worked each week for three months. He earned $136.00 in March, $231.00 in April, and $179.00 in May. Has Blaine earned enough money to buy the computer and printer? If so, how much will he have left after making the purchase?

2. Lilly was playing a computer game about traveling across the United States. The object of this game is to keep track of the miles traveled. In the first round of the game, Lilly traveled 413 miles. In the second round, she encountered many problems and traveled only 281 miles. She had a successful third round and traveled 674 miles. What is the approximate total number of miles that Lilly traveled in the game?

3. Several of the students in Mrs. Dee's computer class were trying to decide who was the oldest. Carter is younger than Leigh, but older than Kendra. Mark is between Kendra and Carter. List the students from oldest to youngest.

4. The technology students have been studying the rise in population in their city over the past ten years in order to produce graphs. In the first three years, the population increased by 3,716 people. In the next four years, the population went up again by 4,119 people. Finally, in the past three years, it increased by 9,658 people. What is the total number of people the population has increased by over the past ten years?

5. The Cunningham High School Technology Team logs the amount of minutes they spend on the computer each month. In September, they logged 3,107 minutes. In October, they were busy with projects and logged a total of 8,983 minutes for the month. How many more minutes did the technology team log in October than in September?
A Fresh Batch of Multiplication

Step 1:
\[
\begin{array}{c}
1 \\
24 \\
\times 4 \\
6 \\
\end{array}
\]
Multiply the ones place first \((4 \times 4 = 16)\).
Write the 6 in the ones place.
Write the 1 ten above so you remember it.

Step 2:
\[
\begin{array}{c}
1 \\
24 \\
\times 4 \\
96 \\
\end{array}
\]
Now, multiply the tens place \((2 \text{ tens } \times 4 = 8 \text{ tens})\).
Then add the 1 ten \((1+8=9)\)

Multiply.

\[
\begin{array}{cccccccc}
12 & 23 & 19 & 14 & 34 & 15 \\
\times 8 & \times 9 & \times 6 & \times 3 & \times 6 & \times 4 \\
33 & 43 & 29 & 45 & 17 & 35 \\
\times 5 & \times 4 & \times 2 & \times 4 & \times 5 & \times 8 \\
18 & 13 & 32 & 28 & 42 & 26 \\
\times 3 & \times 6 & \times 7 & \times 3 & \times 9 & \times 5 \\
25 & 34 & 27 & 16 & 22 & 44 \\
\times 3 & \times 4 & \times 2 & \times 4 & \times 7 & \times 3 \\
\end{array}
\]

Multiplying 2-digit numbers by 1-digit numbers with regrouping
Moving Along with Multiplication

High-Flying Multiplication

| A. \[
\begin{array}{c}
23 \\
\times 14
\end{array}
\] (multiply the ones first) | B. \[
\begin{array}{c}
23 \\
\times 14
\end{array}
\] 92 (don’t forget to add the ten you carried) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>92</td>
</tr>
</tbody>
</table>

| C. \[
\begin{array}{c}
23 \\
\times 14
\end{array}
\] 92 (use a 0 to hold the one’s place) | D. 23 \[
\begin{array}{c}
\times 14
\end{array}
\] 92 (add) |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>230</td>
<td>230</td>
</tr>
</tbody>
</table>

Multiply.

<table>
<thead>
<tr>
<th>[28 \times 33]</th>
<th>[43 \times 48]</th>
<th>[52 \times 29]</th>
<th>[63 \times 19]</th>
<th>[56 \times 15]</th>
</tr>
</thead>
<tbody>
<tr>
<td>[38 \times 24]</td>
<td>[68 \times 18]</td>
<td>[73 \times 14]</td>
<td>[91 \times 54]</td>
<td>[17 \times 23]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>[72 \times 39]</th>
<th>[84 \times 17]</th>
<th>[29 \times 28]</th>
<th>[56 \times 23]</th>
<th>[36 \times 18]</th>
</tr>
</thead>
</table>

| \[72 \times 25\] | \[17 \times 90\] | \[51 \times 47\] | \[45 \times 82\] | \[54 \times 13\] |

Multiplying 2-digit numbers with regrouping
Fast Forward with Multiplication

Multiplying 3-digit numbers by 2-digit numbers

Multiply the ones. Multiply the tens. Then add it all up!

A. 343 x 52 = 686
B. 343 x 52 = 686
C. 343 x 52 = 686

1,7150 + 17150 = 17,836

Multiply.

391 x 24 = 9464
478 x 62 = 2988
927 x 45 = 41715
841 x 29 = 24389
614 x 83 = 51032

597 x 51 = 30547
658 x 73 = 47934
743 x 16 = 11888
126 x 38 = 4788
239 x 15 = 3585

415 x 14 = 5810
807 x 86 = 69282
193 x 19 = 3667
485 x 23 = 11155
318 x 17 = 5406

312 x 33 = 10296
451 x 12 = 5412
312 x 50 = 15600
902 x 74 = 67248
605 x 28 = 17140
And They’re Off

Solve the problems as fast as you can. Time yourself or ask someone to time you.

7 | 56
9 | 36
6 | 42
5 | 27
7 | 33
4 | 24
8 | 56
5 | 25
8 | 10
4 | 18
5 | 45
4 | 28
7 | 33
7 | 49
9 | 18
8 | 18
6 | 18
2 | 18
6 | 54
9 | 18
7 | 10
6 | 12
3 | 16
8 | 72
9 | 63
3 | 24
8 | 64
8 | 24
5 | 40
4 | 32
3 | 15
6 | 30
5 | 15
5 | 25
4 | 14
9 | 45
7 | 21
8 | 40
3 | 19
2 | 14
9 | 72
8 | 56
4 | 12
2 | 10
6 | 30
2 | 18
8 | 48
6 | 36

Time: ___________ Missed _______ out of 49

A winner knows that division is the inverse of multiplication.

Practicing division facts to 9
It is important to keep all your numbers lined up.

Remember, a quotient is the answer to a division problem.

Divide to find the quotient. Watch out for remainders!

\[
\begin{array}{ccccccc}
714 & 5120 & 7166 & 8147 & 9162 & 4130 \\
2114 & 8169 & 3123 & 7142 & 9118 & 5137 \\
9188 & 6155 & 7135 & 7153 & 2110 & 8164 \\
2116 & 7169 & 3115 & 4135 & 9145 & 9181 \\
\end{array}
\]

Dividing 2-digit numbers with and without remainders
Dog Gone Division

Find the quotient!

Divide.

\[
\begin{array}{cccccc}
51255 & 21744 & 41364 & 61240 & 71455 \\
81224 & 51235 & 21122 & 71560 & 61552 \\
91279 & 31156 & 31189 & 41428 & 31753 \\
51425 & 61456 & 71126 & 81656 & 51630 \\
\end{array}
\]

Dividing 3-digit numbers without remainders
Divide.

\[
\begin{array}{cccc}
217 & 84378 & 42578 & 98327 & 87613 \\
71519 & 82578 & 98327 & 87613 \\
-14 & 71578 & -8327 & -7613 \\
11 & -7 & -7 & -7 \\
-7 & -49 & -327 & -3613 \\
-7 & -49 & -49 & -49 \\
-49 & 0 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
63487 & 51575 & 34179 & 61938 & 21675 \\
61575 & 51575 & 34179 & 61938 & 21675 \\
-3487 & -3487 & -3487 & -3487 & -3487 \\
-3487 & -3487 & -3487 & -3487 & -3487 \\
-3487 & -3487 & -3487 & -3487 & -3487 \\
0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

\[
\begin{array}{cccc}
72577 & 82496 & 52673 & 41725 & 32674 \\
72577 & 82496 & 52673 & 41725 & 32674 \\
-2577 & -2577 & -2577 & -2577 & -2577 \\
-2577 & -2577 & -2577 & -2577 & -2577 \\
-2577 & -2577 & -2577 & -2577 & -2577 \\
0 & 0 & 0 & 0 & 0 \\
\end{array}
\]

Dividing 4-digit numbers with and without remainders
Think About It

Solve the problems. Show your work!

1. Kelli bought a new photo album to display pictures. Each page of the album displays six photos. There are a total of 143 pages in the book. How many photos can the album hold?

If Kelli has 964 photos, how many more pages does she need?

2. Farmer Joe has many chickens on his farm. Every week he collects and fills 238 cartons of eggs to take to the market. Each carton can hold 12 eggs. What is the total number of eggs that Farmer Joe collects in one week?

3. Sophie enjoys reading. Over the past week and a half, Sophie has read seven books with a total of 966 pages. If all seven books have the same number of pages, which number sentence can be used to find the number of pages in each book?

 a. $966 + 7 = ______$ b. $966 \times 7 = ______$ c. $966 \div 7 = ______$ d. $966 - 7 = ______$

How many pages were in each book?

4. Kendra’s father is a carpenter. Last week he repaired Mrs. Gibson’s deck. He worked for six hours a day for two days until the job was complete. Kendra’s father then billed Mrs. Gibson for $45.00 an hour. What was the total amount that Mrs. Gibson had to pay?

5. Jesse had 93 miniature racecars and 87 semi-trucks. The toy tracks that he has will make up ten different roads. Jesse wants to put an equal number of vehicles on each road. How many vehicles can he put on each road?
Delicious Fractions

Color the correct amount.

\[
\begin{array}{ccc}
\text{Fraction} & \text{Diagram} & \text{Numerator} \\
\frac{3}{4} & & 3 \\
\frac{3}{8} & & 3 \\
\frac{4}{8} & & 4 \\
\frac{3}{9} & & 3 \\
\frac{4}{6} & & 4 \\
\end{array}
\]

This is \(\frac{11}{4} \)

Draw a picture and color part of it to show the fraction.

\[
\begin{array}{ccc}
\frac{7}{8} & \frac{4}{10} & \frac{3}{5} \\
\frac{2}{5} & \frac{2}{7} & \frac{5}{6} \\
\end{array}
\]

Showing fractions
Write the equivalent fraction.

\[
\frac{1}{2} = \frac{2}{4}
\]

Fractions that name the same amount are called equivalent fractions!

\[
\frac{1}{4} = \frac{2}{8}
\]

\[
\frac{2}{3} = \frac{6}{9}
\]

\[
\frac{1}{3} = \frac{2}{6}
\]

\[
\frac{1}{2} = \frac{3}{12}
\]

\[
\frac{1}{2} = \frac{3}{8}
\]

\[
\frac{1}{5} = \frac{2}{10}
\]

\[
\frac{9}{15} = \frac{3}{5}
\]
Fraction Review I

Shade the correct number of triangles to show the fraction. Then write the number that you shaded.

\[\frac{1}{3} \text{ of } 6 = \text{_____} \]

\[\frac{1}{5} \text{ of } 10 = \text{_____} \]

\[\frac{1}{3} \text{ of } 9 = \text{_____} \]

\[\frac{1}{2} \text{ of } 4 = \text{_____} \]

\[\frac{1}{4} \text{ of } 12 = \text{_____} \]

\[\frac{2}{3} \text{ of } 9 = \text{_____} \]

Draw the correct number of circles and shade the number of parts shown. Then write the fraction for the shaded area.

<table>
<thead>
<tr>
<th>6 circles</th>
<th>8 circles</th>
<th>10 circles</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 parts = \text{_____}</td>
<td>2 parts = \text{_____}</td>
<td>5 parts = \text{_____}</td>
</tr>
<tr>
<td>12 circles</td>
<td>15 circles</td>
<td>6 circles</td>
</tr>
<tr>
<td>4 parts = \text{_____}</td>
<td>3 parts = \text{_____}</td>
<td>2 parts = \text{_____}</td>
</tr>
</tbody>
</table>
Adding it Up

Adding fractions are easy when the denominators are the same.

\[\frac{1}{6} + \frac{3}{6} = \frac{4}{6} \rightarrow \text{numerator} \]

\[\frac{6}{10} + \frac{3}{10} = \frac{9}{10} \rightarrow \text{denominator} \]

Add.

\[\frac{2}{6} + \frac{4}{6} = \quad \frac{1}{5} + \frac{1}{5} = \quad \frac{4}{16} + \frac{7}{16} = \]

\[\frac{6}{10} + \frac{3}{10} = \quad \frac{1}{9} + \frac{6}{9} = \quad \frac{5}{8} + \frac{2}{8} = \]

\[\frac{5}{9} + \frac{1}{9} = \quad \frac{2}{7} + \frac{1}{7} = \quad \frac{2}{6} + \frac{3}{6} = \]

\[\frac{2}{10} + \frac{7}{10} = \quad \frac{1}{12} + \frac{3}{12} = \quad \frac{3}{9} + \frac{4}{9} = \]

\[\frac{3}{8} + \frac{5}{8} = \quad \frac{3}{5} + \frac{1}{5} = \quad \frac{5}{12} + \frac{6}{12} = \]

\[\frac{7}{16} + \frac{4}{16} = \quad \frac{5}{10} + \frac{3}{10} = \quad \frac{6}{14} + \frac{1}{14} = \]

\[\frac{4}{8} + \frac{2}{8} = \quad \frac{3}{15} + \frac{7}{15} = \quad \frac{3}{12} + \frac{7}{12} = \]

Adding fractions with like denominators
Fraction Review II

Solve the fraction problems. Remember to watch your signs.

\[
\frac{1}{6} + \frac{2}{6} = \frac{3}{6} \\
\frac{3}{5} - \frac{1}{5} = \\
\frac{5}{12} + \frac{6}{12} = \\
\frac{5}{9} + \frac{1}{9} = \\
\frac{7}{10} + \frac{2}{10} = \\
\frac{6}{12} - \frac{2}{12} = \\
\frac{7}{9} - \frac{5}{9} = \\
\frac{9}{10} - \frac{5}{10} = \\
\frac{2}{3} - \frac{1}{3} = \\
\frac{7}{8} - \frac{3}{8} = \\
\frac{3}{7} + \frac{1}{7} = \\
\frac{5}{8} + \frac{2}{8} = \\
\frac{4}{16} + \frac{4}{16} = \\
\frac{8}{12} + \frac{2}{12} = \\
\frac{9}{12} - \frac{4}{12} = \\
\frac{7}{10} - \frac{4}{10} = \\
\frac{6}{9} + \frac{2}{9} = \\
\frac{8}{16} - \frac{4}{16} = \\
\frac{5}{15} + \frac{10}{15} = \\
\frac{7}{16} - \frac{5}{16} = \\
\frac{9}{12} + \frac{2}{12} = \\
\]

Reviewing adding and subtracting fractions with like denominators
Fun with Fractions

Finding the greatest common factors for both numbers can be easy!
Simplify those fractions!

8 List all the factors that equal the numerator! (1,2,4,8)
32 List all the factors that equal the denominator! (1,2,4,8,32)

Now, circle the greatest common factor!

Write down the common factors for the numerators and denominators below.
Circle the greatest common factor for each fraction.

\[
\begin{align*}
\frac{6}{18} & \quad \frac{6}{24} & \quad \frac{9}{36} & \quad \frac{7}{42} \\
\frac{9}{81} & \quad \frac{8}{48} & \quad \frac{12}{36} & \quad \frac{14}{28} \\
\frac{5}{20} & \quad \frac{8}{16} & \quad \frac{7}{21} & \quad \frac{16}{48} & \quad \frac{12}{18} \\
\end{align*}
\]

Example: \(\frac{3}{6} \div \frac{3}{3} = 1 \)
\(\frac{6}{3} \div \frac{3}{3} = 2 \)

1st – Find the greatest common factor of the numerator and denominator.
2nd – Divide both the numerator and denominator by that number.

Congratulations! You’ve just simplified that fraction!

Simplify the fractions.

\[
\begin{align*}
\frac{4}{12} = \quad \frac{5}{25} = \quad \frac{7}{28} = \quad \frac{6}{48} = \quad \frac{8}{72} = \quad \\
\frac{12}{24} = \quad \frac{14}{21} = \quad \frac{4}{32} = \quad \frac{7}{63} = \quad \frac{9}{36} = \quad \\
\frac{3}{18} = \quad \frac{9}{27} = \quad \frac{6}{12} = \quad \frac{12}{48} = \quad \frac{9}{12} = \quad \\
\frac{5}{20} = \quad \frac{8}{16} = \quad \frac{7}{21} = \quad \frac{16}{48} = \quad \frac{12}{18} = \quad
\end{align*}
\]
Different, but the SAME!

Write the fraction and mixed numeral for

\[
\frac{5}{2}, \quad 2 \frac{1}{2}
\]

Understanding fractions and mixed numerals
That’s Top Heavy

An improper fraction is a top heavy fraction.

The numerator \(\frac{32}{9} \) is larger than the denominator, so it’s top heavy!

Here’s how to convert a mixed number to an improper fraction.

Step 1: Take the whole number (3).
Step 2: Multiply it by the denominator (9). \(3 \times 9 = 27 \)
Step 3: Add the numerator (5). \(27 + 5 = 32 \)
Step 4: Place the total over the denominator (9). \(\frac{32}{9} \)

Write the mixed number as an improper fraction.

\[
\begin{align*}
2\frac{3}{4} &= \frac{11}{4} \\
6\frac{4}{3} &= \frac{22}{3} \\
8\frac{9}{7} &= \frac{65}{7} \\
4\frac{5}{8} &= \frac{37}{8} \\
7\frac{3}{5} &= \frac{38}{5} \\
5\frac{1}{2} &= \frac{11}{2} \\
3\frac{4}{8} &= \frac{28}{8} \\
7\frac{5}{4} &= \frac{31}{4} \\
2\frac{1}{4} &= \frac{9}{4} \\
2\frac{3}{7} &= \frac{17}{7} \\
4\frac{1}{6} &= \frac{25}{6} \\
1\frac{7}{5} &= \frac{12}{5} \\
6\frac{3}{2} &= \frac{15}{2} \\
8\frac{2}{3} &= \frac{26}{3} \\
8\frac{4}{5} &= \frac{44}{5} \\
2\frac{7}{8} &= \frac{19}{8}
\end{align*}
\]
What's the Value?

A decimal is a number that uses place value and a decimal to show value less than a whole (or one).

A fraction does the same thing. So fractions and decimals mean the same thing. They are just written a little differently.

This whole is divided into tenths.

\[\frac{2}{10} = .2 \]

This whole is divided into hundredths.

\[.26 = \frac{26}{100} \]

Write the fraction and the decimal number for each.
Changing Units

The Golden Rule
When you change larger units to smaller units, you multiply.
Example: 4 yards x 3 feet = 12 feet
When you change smaller units to larger units, you divide.
Example: 36 inches ÷ 12 feet = 3 feet

Convert each unit of measure.

<table>
<thead>
<tr>
<th>Customary Units for Linear Measures</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 inches = 1 foot</td>
</tr>
<tr>
<td>3 feet = 1 yard</td>
</tr>
<tr>
<td>5,280 feet = 1 mile</td>
</tr>
<tr>
<td>1,760 yards = 1 mile</td>
</tr>
</tbody>
</table>

9 feet = _____ inches
36 inches = _____ yards
48 inches = _____ feet
7 feet = _____ inches
36 feet = _____ yards
3,520 yards = _____ miles
5 yards = _____ feet
6 feet = _____ yards
3 miles = _____ feet
14 feet = _____ inches
6 yards = _____ inches
21 feet = _____ yards
2 miles = _____ feet
30 yards = _____ feet
10 yards = _____ inches

If fencing is $2.00 per foot, how much would it cost to fence a dog run with a 36-yard perimeter for Brutus to have fun in?
The Rule of Thumb

Remember to multiply when you change larger units to smaller units and to divide when you change smaller units to larger units.

<table>
<thead>
<tr>
<th>Customary Units for Measuring Liquids</th>
<th>Customary Units for Measuring Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 pint = 2 cups (c.)</td>
<td>16 ounces (oz) = 1 pound (lb.)</td>
</tr>
<tr>
<td>1 quart = 2 pints (pt.)</td>
<td>2,000 lbs = 1 ton (T.)</td>
</tr>
<tr>
<td>1 gallon = 4 quarts (qt.)</td>
<td></td>
</tr>
</tbody>
</table>

Circle the more reasonable measurement.

- 300 T. or 300 lbs.
- 4 oz. or 4 lbs.
- 14 oz. or 14 lbs.
- 10 lbs. or 10 T.
- 15 T. or 15 lbs.
- 1 lb. or 1 oz.
- 15 lb. or 15 oz.

Convert each unit of measure.

- 8 cups = _____ qt.
- 2 lb = _____ oz.
- 3 pt = _____ c.
- 3 gal = _____ qt.
- 64 oz = _____ lb.
- 2 gal = _____ pt.
- 1 qt = _____ c.
- 4 T = _____ lb.
- 3 qt = _____ c.
- 12 pt = _____ c.
- 3 lbs = _____ oz.
- 8 lb = _____ oz.
- 3 qt = _____ c.
- 6 pt = _____ c.
- 5 gal = _____ qt.

Tony needs four cups of cream for a pie. The store sells cream in one-pint containers. How many pints should Tony buy?

Understanding weight and liquid units of measure
Where in the World

Customary Units For Measuring Time

60 seconds = 1 minute
60 minutes = 1 hour
24 hours = 1 day

Solve the problems.

1. Clay spends seven hours each day at school. He goes to school Monday through Friday. About how many hours does Clay spend at school in one week?

2. Craig's guitar lessons were two hours long. If his lesson ended at 6:15, what time did it begin?

3. Cheryl spent the day cleaning. It took her 25 minutes to vacuum, 18 minutes to dust, and 90 minutes to do the laundry. How many minutes did she spend cleaning?

 How many hours?

4. Barbara exercised for 24 minutes. Then she watched television for 40 minutes. Did the two activities combined take more or less than an hour?

5. Abbey sleeps for ten hours. Then she takes her friends to the mall for six hours and the water park for seven hours. Finally, Abbey spends two hours eating meals and helping her mom around the house. Will she be able to do everything in one day? Explain your answer.

Challenge yourself!
Create a list of things that you do that take a second, minute, hour, or day.
Elapsed Time

Saturday Movie Times at Cinema Town

10:00 a.m. Smokey Town
11:45 a.m. The Pink Cat
12:15 p.m. Julie's Wish
3:30 p.m. Emma's Challenge

1. All the movies last 2 hours and 10 minutes. At what time will each movie end?

2. If Elizabeth had to walk home after the 3:30 p.m. showing of Emma's Challenge and it took her 20 minutes to walk home, at what time would she get home?

3. Lloyd arrived at Cinema Town at 9:00 a.m. He was able to stay long enough to watch Smokey Town and Emma's Challenge. How long did Lloyd stay at the movies?

4. How much time is there between the end of The Pink Cat and the beginning of Emma's Challenge?

5. Don and Mark are going to the movies. The movie theater is closer to Mark's house and it takes 15 minutes to get there. If it takes Don 10 minutes to walk to Mark's house and they want to leave in time to see The Pink Cat what time will Don need to leave his house?

Complete the charts.

<table>
<thead>
<tr>
<th>Start Time</th>
<th>End Time</th>
<th>Elapsed Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:15 a.m.</td>
<td></td>
<td>50 min.</td>
</tr>
<tr>
<td>7:30 a.m.</td>
<td>5:25 p.m.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Start Time</th>
<th>End Time</th>
<th>Elapsed Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:30 p.m.</td>
<td>2:40 p.m.</td>
<td></td>
</tr>
<tr>
<td>3:45 p.m.</td>
<td>5:15 p.m.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Start Time</th>
<th>End Time</th>
<th>Elapsed Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30 p.m.</td>
<td></td>
<td>1 hr., 13 min.</td>
</tr>
<tr>
<td>8:15 p.m.</td>
<td></td>
<td>40 min.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Start Time</th>
<th>End Time</th>
<th>Elapsed Time</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:15 p.m.</td>
<td>7:30 p.m.</td>
<td></td>
</tr>
<tr>
<td>5:45 p.m.</td>
<td></td>
<td>1 hr., 20 min.</td>
</tr>
</tbody>
</table>

Understanding elapsed time

43
Perimeter, It's What's Around You!

Perimeter is the distance around a figure. To find the perimeter of a shape or figure, add all the sides.

\[
\begin{align*}
6 \text{ ft.} + 4 \text{ ft.} + 4 \text{ ft.} + 6 \text{ ft.} &= 16 \text{ ft.} \\
4 \text{ ft.} \times 2 \text{ sides} &= 8 \text{ ft.} \\
6 \text{ ft.} \times 2 \text{ sides} &= 12 \text{ ft.} \\
8 \text{ ft.} + 12 \text{ ft.} &= 20 \text{ ft. in perimeter}
\end{align*}
\]

Find the **perimeter** of each shape.

- **Hexagon:** 6 meters + 6 meters + 6 meters = 18 meters
- **Pentagon:** 4 in. + 4 in. + 4 in. + 4 in. + 4 in. = 20 inches
- **Cross:** 5 cm. + 5 cm. + 5 cm. + 5 cm. + 5 cm. = 25 cm.
- **Octagon:** 3 in. + 3 in. = 24 inches
- **L-shaped figure:** 8 yds. + 5 yds. + 3 yds. = 43 yards

Understanding perimeter
Awesome Amounts of Area

Area is the amount of square units needed (or used) to cover a flat surface.

\[\text{Area} = \text{Length} \times \text{Width} \]

Find the area of each. Write the equation and the answer as square units.

1. 4 in. \(\times\) 10 in. \[10 \times 4 = 40 \text{ in.}^2\]
2. 8 ft. \(\times\) 6 ft. \[8 \times 6 = 48 \text{ ft.}^2\]
3. 2 cm. \(\times\) 10 cm. \[2 \times 10 = 20 \text{ cm.}^2\]
4. 8 m. \(\times\) 8 m. \[8 \times 8 = 64 \text{ m.}^2\]
5. 9 km. \(\times\) 2 km. \[9 \times 2 = 18 \text{ km.}^2\]
6. 3 yds. \(\times\) 12 yds. \[3 \times 12 = 36 \text{ yds.}^2\]
7. 13 in. \(\times\) 3 in. \[13 \times 3 = 39 \text{ in.}^2\]
8. 24 yds. \(\times\) 12 yds. \[24 \times 12 = 288 \text{ yds.}^2\]
9. 5 m. \(\times\) 10 m. \[5 \times 10 = 50 \text{ m.}^2\]
Amazing Angles

Write the name of each angle.

Write the name of the marked angle.

Write the name of the marked angle.

Understanding angles
Measuring Around

Solve the problems.

1. On Saturday, Kris is running in the 4-mile race at the park. The race goes around the park two times. The park is a square. What is the length of each side?

2. Katie bought a mirror to put in her dollhouse. The perimeter of the mirror is 50 millimeters and the width is 10 millimeters. What is the length?

3. Kyle wants to make a fence for his garden. The garden is 24 feet long and 16 feet wide. How much fence does Kyle need to buy?

4. Stella loves to go to the art museum. Her favorite painting is 25 feet wide and 10 feet tall. What is the area of the painting?

5. Mrs. Smith is buying carpet for a small room in her house. She needs 9 square yards. The carpet costs $5 a square yard. How much will Mrs. Smith pay for the carpet?

6. How many square yards of carpet do you need to cover a floor that is 6 yards long and 4 yards wide?
Rounding Numbers

Round the numbers to the nearest ten.

248 _____ 63 _____ 71 _____ 326 _____ 104 _____

97 _____ 56 _____ 1,247 _____ 83 _____ 653 _____

45 _____ 132 _____ 87 _____ 49 _____ 99 _____

354 _____ 16 _____ 308 _____ 757 _____ 37 _____

Round the numbers to the nearest hundred.

3,743 _____ 12,278 _____ 374 _____ 145 _____

546 _____ 2,453 _____ 98 _____ 4,389 _____

2,614 _____ 194 _____ 7,643 _____ 893 _____

216 _____ 673 _____ 1,783 _____ 574 _____

Round the numbers to the nearest thousand.

17,524 _______ 6,429 _______ 3,941 _______ 2,642 _______

4,834 _______ 4,216 _______ 1,823 _______ 9,487 _______

23,573 _______ 6,840 _______ 7,927 _______ 1,431 _______

16,743 _______ 5,327 _______ 9,849 _______ 3,347 _______
Multiplication Review II

Multiply.

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>23</td>
<td>37</td>
<td>49</td>
<td>33</td>
<td>22</td>
</tr>
<tr>
<td>x 39</td>
<td>x 7</td>
<td>x 52</td>
<td>x 4</td>
<td>x 18</td>
<td>x 7</td>
</tr>
<tr>
<td>83</td>
<td>92</td>
<td>79</td>
<td>57</td>
<td>85</td>
<td>45</td>
</tr>
<tr>
<td>x 8</td>
<td>x 81</td>
<td>x 8</td>
<td>x 16</td>
<td>x 4</td>
<td>x 17</td>
</tr>
<tr>
<td>57</td>
<td>63</td>
<td>74</td>
<td>67</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>x 19</td>
<td>x 3</td>
<td>x 31</td>
<td>x 6</td>
<td>x 14</td>
<td>x 9</td>
</tr>
<tr>
<td>19</td>
<td>21</td>
<td>39</td>
<td>48</td>
<td>71</td>
<td>83</td>
</tr>
<tr>
<td>x 7</td>
<td>x 89</td>
<td>x 5</td>
<td>x 52</td>
<td>x 7</td>
<td>x 14</td>
</tr>
<tr>
<td>52</td>
<td>18</td>
<td>38</td>
<td>47</td>
<td>52</td>
<td>13</td>
</tr>
<tr>
<td>x 27</td>
<td>x 6</td>
<td>x 29</td>
<td>x 3</td>
<td>x 13</td>
<td>x 9</td>
</tr>
<tr>
<td>41</td>
<td>67</td>
<td>79</td>
<td>83</td>
<td>93</td>
<td>57</td>
</tr>
<tr>
<td>x 8</td>
<td>x 18</td>
<td>x 3</td>
<td>x 19</td>
<td>x 5</td>
<td>x 12</td>
</tr>
</tbody>
</table>
Multiplication Review III

Multiply.

Remember: Multiply the ones place first. Multiply the tens place second. Then add them together!

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>613</td>
<td>459</td>
<td>931</td>
<td>372</td>
<td>492</td>
</tr>
<tr>
<td>x 42</td>
<td>x 17</td>
<td>x 31</td>
<td>x 18</td>
<td>x 22</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>785</td>
<td>412</td>
<td>396</td>
<td>137</td>
<td>209</td>
</tr>
<tr>
<td>x 73</td>
<td>x 16</td>
<td>x 89</td>
<td>x 45</td>
<td>x 29</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>917</td>
<td>406</td>
<td>381</td>
<td>710</td>
<td>118</td>
</tr>
<tr>
<td>x 64</td>
<td>x 92</td>
<td>x 57</td>
<td>x 27</td>
<td>x 72</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>814</td>
<td>926</td>
<td>231</td>
<td>174</td>
<td>349</td>
</tr>
<tr>
<td>x 74</td>
<td>x 28</td>
<td>x 13</td>
<td>x 40</td>
<td>x 29</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>905</td>
<td>714</td>
<td>817</td>
<td>273</td>
<td>384</td>
</tr>
<tr>
<td>x 81</td>
<td>x 39</td>
<td>x 48</td>
<td>x 12</td>
<td>x 17</td>
</tr>
</tbody>
</table>
Division Review I

Divide.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1</td>
<td>4</td>
<td>9</td>
<td>1</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>6</td>
<td>3</td>
<td>9</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>7</td>
<td>1</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>2</td>
<td>9</td>
<td>1</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

Reviewing division
Division Review II

Divide.

<table>
<thead>
<tr>
<th>7</th>
<th>6</th>
<th>4</th>
<th>5</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>172</td>
<td>488</td>
<td>565</td>
<td>272</td>
<td>570</td>
<td>7184</td>
</tr>
<tr>
<td>693</td>
<td>7197</td>
<td>8196</td>
<td>3181</td>
<td>4198</td>
<td>8193</td>
</tr>
<tr>
<td>2198</td>
<td>4176</td>
<td>3157</td>
<td>5192</td>
<td>6178</td>
<td>6172</td>
</tr>
<tr>
<td>2188</td>
<td>3169</td>
<td>7191</td>
<td>6183</td>
<td>4194</td>
<td>5199</td>
</tr>
</tbody>
</table>

Reviewing 2-digit long division
Division Review III

Divide:

<table>
<thead>
<tr>
<th>81729</th>
<th>61375</th>
<th>71575</th>
<th>91817</th>
<th>31472</th>
</tr>
</thead>
<tbody>
<tr>
<td>41159</td>
<td>81928</td>
<td>51318</td>
<td>71287</td>
<td>71523</td>
</tr>
<tr>
<td>31870</td>
<td>91760</td>
<td>61642</td>
<td>51973</td>
<td>91387</td>
</tr>
<tr>
<td>41732</td>
<td>61849</td>
<td>81417</td>
<td>71917</td>
<td>61748</td>
</tr>
</tbody>
</table>

Reviewing 3-digit long division

55
Let Your Brilliance Shine!

1. Write the numbers using Roman Numerals

 | 66 | 47 |

2.

 | 4,793 | 3,482 |
 | + 349 | - 684 |

3. (4 x 7) – 4 __ 8 + (6 x 5)

 - a. +
 - b. <
 - c. =
 - d. >

4. Round the numbers to the nearest thousand.

 | 7,434 | 2,921 | 1,682 |

5. 4,609.72 – 526.94 =

 - a. 4,082.73
 - b. 4,083.78
 - c. 4,082.78
 - d. 4,183.78

6. 84 ÷ 9 =

 - a. 850
 - b. 92 r13
 - c. 91 r4
 - d. 93 r4

7. Write the standard form of three million, forty-six thousand, eight hundred three.

8. Write the word form for 5,870,403.

9. Todd's four friends have no sports trading cards of their own. Todd has 246 baseball cards and 134 football cards. He would like to share his cards with his friends. How many cards will Todd and each of his friends receive? Will they all receive the same amount?

10. Priscilla and her three friends like to play with dolls at her house. She has quite a collection and always likes to share evenly. Priscilla has 76 dolls. She wants each person to have the same number of dolls. How many will each person get? Will there be any dolls left over?

11. Kyle feeds his dog Skippy twice a day. Skippy eats a cup of food each time he is fed. How many cups of food will Skippy eat in a four-week period?
1. Find the missing number in this pattern.

176, 171, ___, 161, 156

- O a. 169
- O b. 166
- O c. 170
- O d. 165

2. 187
 \[\times 92\] \[\times 76\]

3. I am > 634.
 I am even.
 My digits total 17.
 What number am I?

- O a. 619
- O b. 638
- O c. 736
- O d. 566

4. Round the numbers to the nearest hundred.

3,709 8,324 7,641

5. 132.78 + 8,746.23 = __________

6. 9,756 ÷ 8 = __________

7. Write the expanded form of 8,746.

8. 4 hundreds + 11 tens + 7 ones = __________

- O a. 417
- O b. 418
- O c. 517
- O d. 507

9. Jill had saved her babysitting money for several months. She has a total of $89.75 and is going to buy a portable CD player for $37.95 and a CD for $15.99. How much money will Jill have left?

10. Chad sells newspapers. He delivered 378 papers on Monday, 264 papers on Tuesday, and 418 papers on Wednesday. About how many papers has Chad delivered so far this week?

11. Lacey was cleaning her family’s closets and found they had a total of 31 pairs of shoes. After talking with the girls at school, she found that Christina’s family has 47 pairs of shoes and Emily’s small family has 26 pairs of shoes. What method could be used to find how many more pairs of shoes Christina’s family has than Emily’s family?

- O b. Subtract 31 from 47.
- O c. Add 26 and 31 and subtract the sum from 47.
- O d. Subtract 26 from 47.
Fractions and Decimals

Numbers less than a whole can be written two ways—as a fraction or as a decimal. Rewrite the numbers as fractions or decimals.

\[
\begin{align*}
\frac{2}{10} &= \quad \frac{40}{100} &= \quad \frac{8}{10} &= \\
.9 &= \quad .46 &= \quad .79 &= \\
\frac{53}{100} &= \quad \frac{3}{10} &= \quad \frac{31}{100} &= \\
.56 &= \quad .7 &= \quad .5 &= \\
\frac{6}{10} &= \quad \frac{28}{100} &= \quad \frac{1}{10} &= \\
.83 &= \quad .98 &= \quad .4 &= \\
\frac{62}{100} &= \quad .92 &= \quad \frac{43}{100} &= \\
\frac{7}{10} &= \quad .37 &= \quad \frac{18}{100} &= \\
.51 &= \quad \frac{27}{100} &= \quad .82 &= \\
\frac{3}{10} &= \quad .8 &= \quad \frac{19}{100} &= \\
.21 &= \quad \frac{79}{100} &= \quad .13 &= \\
\frac{63}{100} &= \quad .43 &= \quad \frac{74}{100} &=
\end{align*}
\]
1. Which is the most likely to have the capacity of a gallon?
 ○ a. kitchen sink ○ b. water jug
 ○ c. bath tub ○ d. soda can

2. A bathtub would have the capacity of:
 ○ a. 3 gallons ○ b. 4 pints
 ○ c. 50 liters ○ d. 1 cup

3. Grandma was in the baking mood. She decided to make a cake for each of her five grandchildren. Each cake called for eight ounces of cocoa. How many ounces of cocoa did grandma have to buy?

4. Bill needs his morning coffee. If his coffee pot holds one quart of coffee and he pours himself one cup. How much is in the pot now?

5. An elephant would be measured in what?
 ○ a. pounds ○ b. tons
 ○ c. millimeters ○ d. gallons

6. An encyclopedia would be weighed in what?
 ○ a. grams ○ b. kilograms
 If one encyclopedia weighed 2 ___________, how much would 8 weigh?

7. Tim has a bag of marbles that weighs 18 grams. If Jeff’s bag of marbles weighs 27 grams, how much more does Jeff’s bag weigh than Tim’s?

8. If a new born baby weighs 7 lbs., how many ounces is that?

9. Lacey and Tim competed in a dance marathon. They danced for a total of 4 hours and 28 minutes. How many minutes did Lacey and Tim dance?
 ○ a. 240 min. ○ b. 258 min.
 ○ c. 158 min. ○ d. 268 min.

10. Beth checked out a new book from the library. She just couldn’t put it down. She read for a total of 1 hour and 57 minutes yesterday and finished it today by reading for 48 minutes. How many total hours and minutes did it take her to read the book?
Solve the problems.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Round 564 to the nearest ten.</td>
<td>O a. 570 O b. 565 O c. 560 O d. 600</td>
</tr>
<tr>
<td>2. Round 5,758 to the nearest hundred.</td>
<td>O a. 6,000 O b. 5,800 O c. 5,760 O d. 5,700</td>
</tr>
<tr>
<td>3. Alora bought eight hair ribbons. Each ribbon was 18 inches long. How many yards of ribbon did Alora purchase?</td>
<td>O a. 8 yds. 9 in. O b. 9 yds. O c. 11 yds. 10 in. O d. 4 yds.</td>
</tr>
<tr>
<td>4. The circus ran out of pennies and nickels to make change so it had to round everything to the nearest $0.10. What will a $0.78 item cost?</td>
<td>O a. $0.75 O b. $0.80 O c. $1.00 O d. $0.70</td>
</tr>
<tr>
<td>5.</td>
<td>578 x 27 693 x 48</td>
</tr>
<tr>
<td>6.</td>
<td>278 ÷ 4 = 3,764 ÷ 8 =</td>
</tr>
<tr>
<td>7. How much of the pizza has been eaten? Simplify your fraction.</td>
<td></td>
</tr>
<tr>
<td>8. Karen is older than David. Mark is older than Karen. Angie is older Mark. Who is the oldest?</td>
<td></td>
</tr>
<tr>
<td>9. Connie has a doctor’s appointment at 3:30 p.m. She was held up at school and didn’t arrive until 4:50 p.m. How late was Connie?</td>
<td></td>
</tr>
</tbody>
</table>
| 10. Find the greatest common factor for each fraction and simplify. | \[
\frac{16}{64} = \quad \frac{9}{54} = \quad \frac{25}{45} =
\]
Should Upper House Students have PDR? Why?
What is your favorite day of the week? Why?
Would you rather be really smart, really good looking, or really athletic? Why?
Is it better to be a kid or an adult? Why?
How can you stay busy on a rainy day without electronics?
How can you cheer up a friend when they are sad?
What would it be like if dinosaurs still lived?
Write a story about finding a mysterious box in the grass.
Write a story about being invisible for a day.
Write about finding a dragon egg that is about to hatch.